Learning syntactic parameters without triggers
by assigning credit and blame

Brandon Prickett, Kaden Holladay, Shay Hucklebridge, Max Nelson,
Rajesh Bhatt, Gaja Jarosz, Kyle Johnson, Aleksei Nazarov, and Joe Pater
University of Massachusetts Amherst and University of Toronto

1 Introduction

Parametric approaches to syntax have been widely adopted since the advent of the
Principles & Parameters framework in the early 1980s. Parameters are designed to
provide a solution to the linguistic facet of Plato’s Problem—namely, the logical
problem of how language, with potentially infinite well-formed expressions, can
be acquired on the basis of the finite data the learner encounters (Chomsky, 1981).
Parameters limit the hypothesis space for the learner, reducing syntactic acquisition
to the setting of a finite number of innate parameters.

Providing an explicit theory of how parameters are set has proved to be a chal-
lenge. Some theories require the presence of triggers—unambiguous data which
entail that one or more parameters need to be set a certain way (Gibson & Wexler,
1994). A challenge for models utilizing triggers is that even simple parametric
systems generate languages with no unambiguous data points (Gibson & Wexler,
1994); these languages are unlearnable by trigger-based approaches without further
stipulations about the learning process.

Other models that avoid the need for triggers require the learning space to be
smooth (e.g. Yang, 2002). That is, these models require “a correlation between the
similarity of grammars and the languages they generate” (Sakas et al., 2017). Un-
fortunately for these approaches, realistic language data rarely represents a smooth
learning problem (Dresher, 1999). As we demonstrate here, even a relatively small
number of parameters can lead to systems that are not efficiently learned by such
approaches.

In this work, we adapt two domain-general learning algorithms from computa-
tional phonology that are not dependent on smoothness or triggers because of their
ability to analyze the contributions made by individual parameters. As a baseline,
we compare these to Yang’s (2002) Naive Parameter Learner, which does not per-
form this kind of analysis and has been shown to require smoothness (Straus, 2008).
We apply all three models of acquisition to syntactic learning, testing them on two
simple parametric systems containing headedness and movement parameters. Our
results show that Yang’s (2002) algorithm is not sufficient for the task, while the
other two models succeed—suggesting that future theories of syntactic learning
should incorporate analysis of individual parameter settings into their learning.

2 Background

2.1 Hidden Structure and the Credit/Blame Problem

Even in simple parametric systems, a single surface string may be consistent with a
number of different parameter settings. The learner must induce the correct settings
for their language in the face of this ambiguity. That is, the learner must induce
the hidden structure underlying each datum it encounters. In the case of syntactic
parameters, this includes hierarchical structure, which is absent from the linearized
surface string.

For example, consider a learner attempting to acquire the correct values for the
parameters defined in (1b), which mimic some of the syntactic variation found in
Germanic languages. While English, for example, features SVO (Subject-Verb-
Object) word order, and main verbs remain relatively low, the standard analysis
of German since Bach (1962) is that it is an SOV language. However, German’s
SOV ordering is obscured because of verb fronting in matrix clauses (often yielding
surface SVO).

(1) a. HEADEDNESS
if O : the constituent {O, V} is linearized ‘OV’
if 1 : The constituent {O, V} is linearized ‘VO’

b. V2
if O : there is no movement
if 1 : the structurally highest non-V comes linearly first, and the highest
V comes linearly second

Imagine that the learner hears a sentence with an SVO word order. The structure
of this sentence could be any of the trees shown in (2-4).

2) 3)

The tree in (2) has a word order of SOV before movement, by virtue of the fact
that HEADEDNESS is set to 0. However, since the V2 parameter for this language
is set to 1, both the structurally highest non-V (the S) and the V move to higher
positions in the tree, and this yields an SVO order. In (3), prior to movement, the
ordering of terminals is SVO since HEADEDNESS=1, but since V2 is again set to 1,
string-vacuous fronting of S and V occurs. In (4), no movement occurs (V2=0), but
HEADEDNESS is set to 1, and so the resulting string is likewise SVO.

In short, the interaction between the HEADEDNESS and V2 parameters results
in ambiguity for even simple SVO sentences. Whenever V2 has a value of 1, verbs
will occur in the second position of the sentence. This will often obscure the value
of HEADEDNESS, since a verb could originate after its object (if HEADEDNESS=0),
but be moved to a position preceding the object (if V2=1).

If learning is assumed to follow a general strategy of updating parameters in
response to incorrect predictions, the learner can face problems with this kind of
ambiguity. For example, if the learner has both of these parameters set to zero
(which would result in an SOV sentence) and encounters an SVO sentence, which
parameter setting is to blame for the incorrect prediction is completely ambiguous.
The learner could blame HEADEDNESS, and push that parameter towards a setting
of 1, resulting in an SVO language that generates tree like (4). On the other hand,
the learner could blame V2, and attempt to push V2 toward a value of 1, resulting
in a V2 language with SOV order before movement (2). Or, the learner could blame
both parameters, and move toward being a V2 language with SVO order (3) pre-
movement. Nothing in the string SVO provides any evidence about which of these
solutions is the correct one.

Likewise, if the learner correctly predicts an SVO word order, it is not clear
which parameter should be credited with the success and which (if any) parameters
are irrelevant. The issue of assigning responsibility to the correct parameter will
be referred to as the Credit/Blame Problem (Clark, 1989; Dresher & Kaye, 1990;
Dresher, 1999) for the remainder of this paper. There are several ways of handling
this problem in language acquisition, and we discuss some of these different meth-
ods in §2.2 and §2.3.

2.2 Smoothness and Triggers

One way that models overcome the Credit/Blame Problem is by depending on trig-
gers in their training data. Triggers are unambiguous forms that give a model the
knowledge it needs to find the correct setting for a specific parameter. That is, in a
trigger-based approach to learning, at least one unambiguous datum must exist in a
language for each parameter in the grammar. In syntactic modeling, these triggers
have taken the form of linearized strings (Gibson & Wexler, 1994) as well as parsed
subtrees (Fodor, 1998).

One issue with a dependence on triggers is that in natural language, and even
in most simplified learning scenarios, sentences that provide unambiguous infor-
mation about a parameter setting will not exist in all languages (Gibson & Wexler
1994; although see Fodor 1998 for how using parsed subtrees as triggers can help
with this). Yang (2002) proposes a solution to triggers’ shortcomings: a proba-
bilistic grammar that can make use of ambiguous and unambiguous data points.
He shows that such a learner can acquire the correct syntactic parameter settings,
even when there are no data present that completely disambiguate certain parameter
values.

However, while this approach does not depend on triggers, it does depend on
a smooth learning space (Straus, 2008; Nazarov & Jarosz, 2017). That is, in order
for Yang’s (2002) algorithm to reliably converge on the correct parameter settings,
changing each individual parameter must move the model as a whole closer to the

full solution (Dresher, 1999). If the model finds itself in a situation in which its
parameter settings are incorrect, but making any single change would lower its ac-
curacy on the training data, the correct parameter settings can only be stumbled
upon by chance (Sakas et al., 2017). Not only is this chance performance qualita-
tively different than the kind of behavior that infants seem to display, but it is also
lacks the efficiency that would be needed to account for human language acquisition
(Jarosz & Nazarov, 2019).

This weakness in Yang’s (2002) proposal stems from the Credit/Blame Problem
discussed in §2.1. That is, while the algorithm is able to use ambiguous data to
reward and penalize parameter settings, it fails to consider which parameters de-
serve credit for correct predictions and which are to blame for incorrect ones. More

details about how parameter settings are updated in this approach can be found in
§3.1, below.

2.3 Using Analysis in Learning

In order to appropriately address the Credit/Blame Problem, the parts of a grammar
that are responsible for correct and incorrect predictions must be estimated during
learning. We call this process analysis and present results in §4 from two models
that make use of it in their learning.

One of these methods is Expectation Driven Learning (Jarosz, 2015; Nazarov
& Jarosz, 2017; Jarosz & Nazarov, 2019), an algorithm that samples from a proba-
bilistic grammar in order to change parameter settings in a way that will increase the
probability of the training data, given the model’s grammar. The other method that
we explore here is Gradient Descent in a Maximum Entropy (Goldwater & Johnson,
2003) adaptation of parametric systems. In this adaptation, parameters are replaced
by weighted, opposing constraints, and learning involves using the gradients of a
loss function to determine which constraint weights are responsible for a model’s
incorrect and correct predictions.

Neither of these approaches are guaranteed to converge on the correct solution'
when hidden structure is present in learning. However, as we show below, using
analysis in the process of acquisition allows them to succeed on the simple systems
we test, overcoming the dependence on smoothness that limits approaches like Yang
(2002).

3 Learning Models

3.1 Naive Parameter Learner

The Naive Parameter Learner (NPL; Yang 2002) is an incremental, online algo-
rithm for finding a set of parameter values. The NPL does this by assigning prob-
abilities to every parameter setting and sampling from this probability distribution.
If a sampled set of parameter values creates output that matches the model’s train-
ing data, those values are rewarded—however, if an incorrect output is produced,
the values are penalized. These penalties and rewards are implemented using the

'We define a “correct solution” as a run in which the model has an accuracy equal to or greater
than 90% on the training data at the end of learning.

Linear Reward-Penalty Scheme (Bush & Mosteller, 1951), described by the equa-
tion in (I), where 1), is a parameter setting i, R() is a reward function that updates
parameter values, A is the model’s learning rate, and G is the grammar at time ¢.

@ pWi | Geya) = AR(Y:) + (1 = N)p(¢; | Gy)

In the NPL, every parameter receives the same reward at each point in learning.
If the grammar correctly predicts the datum observed in the model’s training data,
R(v)) = 1 for all parameters used in the generation of that string, but if the datum
is incorrectly predicted, R(¢)) = 0 for each of these parameter values.

The probabilistic nature of the NPL allows it to overcome the need for triggers.
For example, consider two data points (d, and d;) and a two-parameter system
(with binary parameters p;, p2). Suppose that d, unambiguously supports a setting
of 1 for p; but is ambiguous between settings of 1 and O for py. Similarly, d, is
ambiguous between settings of 1 and O for p;. However, the information d, gives
about p- is dependent on the settings of p;: if p; is set to 1, d, unambiguously
supports po=1, but if p; is 0, d, unambiguously supports p,=0.

If the NPL was used to learn the correct settings for this system, at the beginning
of training, d, wouldn’t change the probability for any parameter settings, since it
would be completely uninformative. However, every time the model saw d,, it
would increase the probability of p;=1, and as this probability increased, d, would
become a useful data point for raising the probability of po=1. While neither d, nor
d, could act as categorical triggers for p;, when using a probabilistic approach to
learning, these ambiguous data could work together to allow the model to find the
correct grammar.>

However, while the NPL avoids the need for triggers, as mentioned in §2.2, the
model does require smoothness. This is related to the rewards and penalties dis-
cussed above: since the full set of parameter settings is given credit/blame when
a correct/incorrect prediction is made, the algorithm requires improvements in ac-
curacy as parameter values are updated. Otherwise, the NPL’s approach can only
succeed by randomly chancing upon the correct solution when it samples from its
parameter probabilities (a method of success that becomes exponentially less ef-
ficient with each parameter added to the system). This random acquisition of a
pattern’s solution, rather than gradually accumulating knowledge about the correct
parameter settings, is a behavior that we observe in our results in §4 and has been
shown to cause the NPL to be slower than chance at converging on a solution, given
more complex parametric systems (Jarosz & Nazarov, 2019).

3.2 Expectation Driven Learning

Expectation Driven Learning (EDL; Jarosz, 2015) is another way to find parameter
settings using probabilistic rewards and penalties. However, unlike the NPL, each
parameter is given its own value for R(1);) at each update, with the value of the
reward/penalty being proportional to that parameter setting’s probability, given the

’In this simple example, the NPL’s success depends on the parameters’ independence. Parame-
ters are not usually independent in more complex systems, like the example discussed in 2.1.

training data. The algorithm utilizes Bayes” Theorem to calculate this value, using
an estimate of the training data’s probability given the grammar. This shown in (II),
where d is a single training datum and v); is a single parameter setting.

N p(d|vi)p(v:)

To estimate p(d|1);), the model creates a temporary grammar with parameter i
categorically set to either O or 1 and samples the remaining parameters, according
to their probabilities in the current grammar. A fixed number of samples are taken
(this is a hyperparameter set by the analyst) and the proportion of matches with
d provides the estimate that the algorithm needs. The probability of v); is equal
to the current probability for that setting in the model’s grammar. The value of
p(d) is found by adding the estimates for p(d|v;) and p(d|v);), where ¢; and 1; are
opposite settings for the same parameter.

This results in EDL assigning a reward/penalty to each parameter setting that
takes into account how well that setting individually predicts the datum of interest
(given the rest of the grammar’s current probabilities). As discussed in §2.3, by in-
corporating this analytic step into its updates, EDL is able to avoid the Credit/Blame
Problem that arises when other models learn patterns with hidden structure. If a
particular parameter setting (i.e. ;) is responsible for either a correct or incorrect
prediction, that will be directly incorporated into its reward or penalty.

The way in which EDL uses a model’s current grammar to improve its parameter
settings is an example of Expectation Maximization (Dempster et al., 1977). This
method has been successfully applied in phonology to a number of hidden structure
problems (e.g. Jarosz, 2006), since it allows updates to be made during learning
without a full understanding of a form’s underlying structure.

3.3 Maximum Entropy Model

Maximum Entropy Grammar (MaxEnt; Goldwater & Johnson, 2003) is another
way to represent the syntactic patterns that we explore here. MaxEnt models de-
fine a probability distribution over possible candidates (in our case, sentence struc-
tures) based on OT-syle constraint violations (Smolensky & Prince, 1993) and those
constraints’ weights. In our implementation, violations for each constraint can be
any natural number and weights can be any positive, real-valued number (note that
while these restrictions are relatively standard in phonology, they are not true of all
MaxEnt models).

The constraints we use correspond to the parameters used in the EDL and NPL
models. For each parameter, there is a pair of constraints such that each of the pair’s
two rankings correspond to one of the parameter’s values. In a MaxEnt framework,
the probability of a structure (o) according to the model is e raised to the weighted
sum of that structure’s constraint violations (H ,, often called Harmony), normal-
ized across all data with the same input (we call the set of data that share the same
input 7). The equations for the Harmony and probability of a structure are shown
in (IIT) and (IV), respectively.

€H°

() Hy, =Y ceclc(o)w,) V) plo) = S (i)

Learning a language in this framework consists of finding the optimal weights
to describe the model’s training data (Berger et al., 1996). To find these weights,
we use stochastic gradient descent. This algorithm uses the difference between
a model’s expectations and and the observed forms in the training data to make
gradual updates to each constraint’s weight. This difference is formalized as a loss
function (specifically, we used log likelihood) and the weight updates are equal to
the gradients of this loss function scaled by a learning rate. The negative gradient
for any constraint, given an observed form o, is the difference between the number
of observed and expected violations of that constraint, as shown in (V).

(V) Wi 41 = Wiy + A (ObSl(O') — Epr,(O_))

Exp;(0) is the expected number of violations of ¢, given o. This is formalized
as the weighted sum of the violations of 7 for all possible forms that share an input?
with o (including o itself), where each datum is weighted by the probability that
the current grammar assigns it. This is shown in (VI).

(VD) Expi(0) =Y _ serci(a’)p(o’)

Obs; (o) is the number of violations of the ith constraint for the observed form
0. Since the training data only contains surface strings (with no explicit syntac-
tic structures), Obs;(o) needs to be estimated. To find this estimation, we use a
weighted sum of violations for all structures consistent with an observed surface
string (we call this set of structures S). The weight that each structure’s violations
receive is equal to the model’s current estimate of that structure’s probability.

(VI) Obs;(0) = Zaesci(a)%

This allows updates to be based on the model’s current beliefs about the struc-
ture of the observed data. Like EDL, this approach to estimating Obs; (o) is an im-
plementation of Expectation Maximization (Dempster et al., 1977) and allows the
MaxEnt model to perform the kind of analysis outlined in §2.3. For other examples
of Expectation Maximization in a MaxEnt framework, see Pater et al. (2012) and
the references therein, as well as Johnson e al. (2015), Nelson (2019), and Prickett
& Pater (2019).

3For more on how the inputs and outputs are structured in our examples, see §4.2-3.

4 Learning Simulations
4.1 Learning Task
To test the three models discussed in §3, we set up two simplified typologies: one
with three parameters and one with four. Parameters were of headedness and move-
ment varieties, as in (1b). Both of these scenarios abstracted away from individual
words and presented the model with input-output pairs consisting of syntactic role
labels: S, O, V, and A(dverb). The input data denoted constituency relationships
(with no linear order), while the output data gave linear surface order. The settings
of the parameters, which determine how input data are mapped to output data, were
always hidden from the model during training.

Below we show that for both three- and four-parameter systems, EDL and Max-
Ent outperform the NPL because of their ability to assign credit and blame to dif-
ferent parameters.

4.2 Three Parameter Results

Our three-parameter system is based on the system used by Gibson & Wexler
(1994), with two headedness parameters (COMP and SPEC; for “complement” and
“specifier”’) and one movement parameter (V2). The definitions for these are given
in (5), and the full typology of languages is shown in Table 1.

5) e (CoOMP: determines order of O and V before movement

if0: OV
if 1: VO

e SPEC: determines order of S and {O, V} before movement
if 0: S{O,V}
if 1: {O,V}S

e V2:
if 0: no movement
if 1: V is linearly second in the output, and the highest (non-V) word
is linearly first

We trained the NPL, EDL, and MaxEnt models on each of these languages for
400 iterations, where an iteration was an update based on a single training datum
(that is, each model was trained using an online version of its algorithm*). Since
there were four distinct data points in each language, 400 iterations equated to 100
passes through the full set of training data (referred to as epochs below). EDL
and the NPL both used a learning rate of .05 and began with all parameter setting
probabilities set to .5. MaxEnt used a learning rate® of .5, with initial weight values
of 0. Figure 1 shows learning curves for each model, averaged over 10 runs, for all
of the languages in the three-parameter typology.

These results demonstrate that the EDL and MaxEnt models converged for all
of the languages within 400 iterations. However, the NPL did not converge for all
of the languages in this typology, given the same amount of training. The NPL also

“Note that in the case of the NPL, only online learning can be performed.

SWhile the learning rate used in MaxEnt does not directly correspond to the learning rate in
the other two approaches, the value we chose produced updates on the model’s accuracy that were
similar in magnitude to EDL’s.

000 001

10
. 08
£
5
S
‘5 06
&
@
-3
S 04
-
<

02 = EDL = EDL

NPL NPL
== MaxEnt w— MaxEnt
D0L
] 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Iteration Iteration
100 101

Average Percent Correct

w— EDL

— MaxEnt

[] 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
RReration Rteration
010 011

o8

Average Percent Correct
o o E=3 I~
& = S 5
-

= EDL == EDL
NPL NPL
= MaxEnt = MaxEnt
00 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Reration Ireration
110 111
10

Average Percent Correct
o o o 3
~ = 3 o

w— EDL w— EDL
NPL NPL
= MaxEnt - MaxEnt
0.0
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Iteration Iteration

Figure 1: Learning curves for each model in each language for the three-parameter
typology.

1 [000 | 001 | 010 | OIl |

SV SV SV | VS | SV
{S{OV}} | SOV | SVO | OVS | SVO
[A{S{V1}}] | ASV | AVS | AVS | AVS
{A{S{OV}}} | ASOV | AVSO | AOVS | AVOS
[100 | 101 | 110 | 11l |
SV} SV SV | VS | SV
{S{OV}} | SVO | svO | VoS | svo
[A{S{V}}} | ASV | AVS | AVS | AVS
{A{S{OV}}} | ASVO | AVSO | AVOS | AVOS

Table 1: Full three-parameter typology. The first column shows the inputs that each
model received, the rows containing numbers give the labels for each language, and
all other cells show the appropriate outputs, given each input and language. Each
digit in the language labels represents a parameter setting, with the first, second, and
third digits representing COMP, SPEC, and V2, respectively.

differed from the other models in how it arrived at a successful grammar. While
MaxEnt and EDL both gradually accumulated knowledge over the course of learn-
ing, the NPL typically underwent an abrupt transition from incorrect to correct
parameter settings. The abruptness of the NPL model is obscured in Figure 1 since
results are averaged across multiple runs. However, the phenomenon is clearer in
Figure 2, where a single representative run for the NPL is shown.

1.0

0.8 -

o
o
——

-
[
I
o
E |
E L
5-'204“ ‘
o
v
— Comp
02t ‘ Spec
‘ V2
|
0.0 w \ : ‘
0 500 1000 1500 2000

Iteration

Figure 2: Learning curves from a single run of the NPL. Each line represents a
different parameter setting’s probabilities. Solution is abruptly discovered around
the 800th iteration.

In Figure 2, the NPL model oscillates around chance performance for the ma-
jority of learning (with each parameter setting’s probabilities hovering near .5) and
then stumbles upon the correct answer abruptly around the 800th iteration. This is

in contrast to both EDL and the NPL which gradually change their parameter setting
probabilities (or constraint weights) to better match the data, and thus slowly move
toward the correct grammars in training. This gradual accumulation of knowledge

is shown for individual runs of EDL and MaxEnt in Figures 3 and 4, respectively.
1.0 r ; . : T - -

0.8}
0.6
9]
kTl
£
(]
o \
= 04}
£
% — Comp
0.2 *
LT Y, Spec
&, V2
.
0.0 - e ‘ ‘ ‘
0 100 200 300 400 500 600 700 800

Iteration

Figure 3: Learning curves from a single run of EDL. Each line represents a different

parameter setting’s probabilities. Solution is gradually discovered.
1.0 T T - T T

0.8}
0.6
[
@
‘o
£
m
©
= 04
&
— Comp
02l SDEC
k V2
0.0 _\ : T
0 20 40 60 80 100

lteration

Figure 4: Learning curves from a single run of MaxEnt. Each line represents a the
difference between the two constraints relevant to each parameter.

4.3 Four Parameter Results

To further test the models, we implemented a more complex, 4-parameter system
that better represented syntactic typology in natural language. To do this, we re-
moved SPEC, and split V2 into three different parameters. The full set of parameters
used in these simulations is shown in (6).

(6) e CowMmp: O is to the (left, right) of V

e V.MOVE: V (is, is not) fronted in all clauses
e V.MOVE.MATRIX: V (is, is not) fronted in matrix clauses only
e TOPIC: some non-V word (is, is not) fronted to first position

The latter three parameters provide a better fit to the variation found in verb-
fronting languages. Having both V.MOVE and V.MOVE.MATRIX imitates the con-
trast between langauges like Icelandic (with verb fronting in all clauses) and Ger-
man (with fronting in matrix clauses only). A setting of V.MOVE=0 rendered the
setting of V.MOVE.MATRIX irrelevant, such that, for example, under V.MOVE=0
and V.MOVE.MATRIX=1, no verb fronting would occur in any clause. The TOPIC
parameter allowed for any non-verb to be fronted (not just the structurally high-
est non-verb), as in Germanic languages. If TOPIC was set to 0, no non-V was
fronted, and a verb-initial word order could result under V2=1, mimicking Celtic
(see McCloskey 1996: §1).

For the sake of space, we do not give the full set of data used in these sim-
ulations. However, every combination of parameter values was represented as a
language (for a total of 16 languages), and the inputs in (7) were present in each of
these languages’ training data. (Note that these include auxiliaries; auxiliaries were
considered verbs for the purposes of verb fronting). The data included multiple
versions of each of these inputs: every datum appeared in matrix and non-matrix
clauses, and data that contained subjects, objects, and adverbs featured each of these
categories in topicalized and non-topicalized forms (with a total of 32 data points
per language).

(7 {S{V}}

{S{OV}}
{Aux{S{V}}}
{Aux{S{OV}}}
{A{S{V}}}
{A{S{OV}}}
{Aux{A{S{V}}}}
{Aux{A{S{OV}}}}

Qualitatively, the MaxEnt and EDL models’ performance on this data set was
similar to their performance on the 3-parameter system. They converged on the
correct solution in all languages, and did so in a relatively small number of itera-
tions. However, the NPL model suffered due to the added complexity and lack of
smoothness that the 4-parameter system created. This is illustrated below in Figure
S, which shows how the NPL fails to converge on the majority of languages within
50 epochs (i.e. full passes through the training data).

5 Discussion
5.1 Summary
Our results have shown that both triggers (Gibson & Wexler, 1994; Fodor, 1998)
and smoothness (Yang, 2002; Straus, 2008) are not necessary for learning simple
syntactic parameter systems, as long as the model being used makes use of analysis
while learning. Specifically, two such models (MaxEnt and EDL) could learn all

1.0

— EDL
NPL
— MaxEnt ||

o
o0

e
o

e
i

Proportion of Converged Languages

o
[N}

0.0

Epoch

Figure 5: Proportion of languages that each model has converged on, by epoch of
training. Convergence is defined as having >90% accuracy on the training data.
Since there are 32 data points in training, 50 epochs represents 1600 updates to the
models’ parameters.

of the languages in two different parameter-based typologies in an efficient man-
ner, while a model that depended on smoothness could not acquire these simple
languages in a reasonable amount of training time. This suggests that the NPL and
trigger-based approaches should be reevaluated, since models that do not depend
on these properties can successfully learn simple syntactic patterns.

5.2 Future Work

One primary avenue for future research is expanding the parameter space that mod-
els are tested on (for example, by using the parameter set in Sakas & Fodor, 2011).
Using more realistic training data is another long-term goal of this project. All of
the learning simulations we ran in this paper gave models access to all grammati-
cal sentence structures, which is not a likely scenario for language-learning infants
in the real-world. Artificial language learning experiments are another way to test
models of language acquisition that has had success in the domain of phonology
(e.g. Wilson, 2003; Moreton et al., 2017, among others). Comparing these models
to human performance on syntactic artificial language learning could be another
way to differentiate between competing theories.

Additionally, the fact that EDL and MaxEnt were originally developed for phonol-
ogy and generalized succesfully to the domain of syntax suggests that these solu-
tions could generalize to other areas of linguistics as well. Applying these learning
techniques to morphological and semantic acquisition could be useful steps in see-
ing how far their usefulness can be extended.

References
Bach, E. 1962. The order of elements in a transformational grammar of german.
Language 38.263-269.

Berger, A. L., V.J. D. Pietra, & S. A. D. Pietra. 1996. A maximum entropy approach
to natural language processing. Computational linguistics 22.39-71.

Bush, R. R., & F. Mosteller. 1951. A mathematical model for simple learning.
Psychological review 58.313.

Chomsky, N. 1981. Lectures on Government and Binding. Foris.

Clark, R. 1989. On the relationship between the input data and parameter setting.
In Proceedings of NELS, volume 19, 48—62.

Dempster, A. P., N. M. Laird, & D. B. Rubin. 1977. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39.1-22.

Dresher, B. E. 1999. Charting the learning path: Cues to parameter setting. Lin-
guistic Inquiry 30.27-67.

Dresher, B. E., & J. D. Kaye. 1990. A computational learning model for metrical
phonology. Cognition 34.137-195.

Fodor, J. D. 1998. Parsing to learn. Journal of Psycholinguistic research 27.339—
374.

Gibson, E., & K. Wexler. 1994. Triggers. Linguistic inquiry 25.407-454.

Goldwater, S., & M. Johnson. 2003. Learning ot constraint rankings using a max-
imum entropy model. In Proceedings of the Stockholm workshop on variation
within Optimality Theory, volume 111120.

Jarosz, G. 2006. Rich lexicons and restrictive grammars: Maximum likeli-
hood learning in Optimality Theory. Johns Hopkins University dissertation.
http://roa.rutgers.edu/files/884-1206/884-1206-7-0.PDF.

Jarosz, G. 2015. Expectation driven learning of phonology. Ms., University of
Massachusetts Amherst . https://people.umass.edu/jarosz/edl_submitted.pdf.

Jarosz, G., & A. Nazarov. 2019. Evaluating domain-general learning of parametric
stress typology. Proceedings of the Society for Computation in Linguistics 2.383—
384.

Johnson, M., J. Pater, R. Staubs, & E. Dupoux. 2015. Sign constraints on feature
weights improve a joint model of word segmentation and phonology. In Proceed-
ings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 303-313.

McCloskey, J. 1996. On the scope of verb movement in irish. Nature Language &
Linguistic Theory 14.47-104.

Moreton, E., J. Pater, & K. Pertsova. 2017. Phonological concept learning. Cogni-
tive science 41.4—69.

Nazarov, A., & G. Jarosz. 2017. Learning parametric stress without domain-specific
mechanisms. In Proceedings of the Annual Meetings on Phonology, volume 4.

Nelson, M. 2019. Segmentation and ur acquisition with ur constraints. Proceedings
of the Society for Computation in Linguistics 2.60—68.

Pater, J., K. Jesney, R. Staubs, & B. Smith. 2012. Learning probabilities over un-
derlying representations. In Proceedings of the twelfth meeting of the Special
Interest Group on Computational Morphology and Phonology, 62-71. Associa-
tion for Computational Linguistics.

Prickett, B., & J. Pater. 2019. Learning Hidden Structure with
Maximum Entropy Grammar. 27" Manchester Phonology Meeting .
https://github.com/blprickett/Hidden-Structure-MaxEnt.

Sakas, W. G., & J. D. Fodor. 2011. Generating CoLAG Languages Us-
ing the ‘Supergrammar’. Technical report, City University of New York.
http://www.colag.cs.hunter.cuny.edu/pub/COLAG_2011_supergrammar.pdf.

Sakas, W. G., C. Yang, & R. Berwick. 2017. Parameter setting is feasible. Linguistic
Analysis 41.

Smolensky, P, & A. Prince. 1993. Optimality theory: Constraint interaction in
generative grammar. Optimality Theory in phonology p. 3.

Straus, K. J. 2008. Validation of probabilistic model of lan-
guage acquisition in children. Northeastern University dissertation.
https://repository.library.northeastern.edu/files/neu: 1578/fulltext.pdf.

Wilson, C. 2003. Experimental investigation of phonological naturalness. In Pro-
ceedings of the 22nd west coast conference on formal linguistics, volume 22,
533-546. Citeseer.

Yang, C. D. 2002. Knowledge and learning in natural language. Oxford University
Press on Demand.

